
Motorola 8- and 16-bit Embedded Application Binary
Interface (M8/16EABI)

SYSTEM V APPLICATION BINARY INTERFACE
Motorola M68HC05, M68HC08, M68HC11, M68HC12, and M68HC16 Processors

Supplement

Version 2.0

i M8/16EABI Version 2

Copyright  1998 Motorola, Inc. All rights reserved.
Copyright  1990-1992 The Santa Cruz Operation, Inc. All rights reserved.
Copyright  1991,1992 88open Consortium Ltd.. All rights reserved.

This specification includes material copyrighted by 88open Consortium Ltd., which is reproduced with
permission.

This specification includes material copyrighted by The Santa Cruz Operation, Inc. which is reproduced
with permission.

Important Notice to Users

Every effort has been made to ensure the accuracy of all information in this document. Motorola
assumes no liability to any party for any loss or damage caused by errors or omissions or by
statements of any kind in this document, its updates, supplements, or special editions, whether
such errors are omissions or statements resulting from negligence, accident, or any other cause.
Motorola further assumes no liability arising out of the application or use of any information,
product, or system described herein; nor any liability for incidental or consequential damages
arising from the use of this document. Motorola disclaims all warranties regarding the
information contained herein, whether expressed, implied or statutory, including implied
warranties of merchantability or fitness for a particular purpose. Motorola makes no
representation that the interconnection of products in the manner described herein will not
infringe on existing or future patent rights, nor do the descriptions contained herein imply the
granting or license to make, use, or sell equipment constructed in accordance with this
description.

Trademarks

Motorola is a trademark of Motorola, Inc.

The Santa Cruz Operation is a registered trademark of The Santa Cruz Operation, Inc. in the
USA and other countries.

88open is a registered trademark of 88open Consortium Ltd.

Motorola, Inc. Transportation Systems Group, Microcontroller Division

ii M8/16EABI Version 2.0

References
System V Application Binary Interface, Fourth Edition, UNIX System Laboratories, 1995.

System V Application Binary Interface, Motorola 88000 Processor Supplement, 88open
Consortium Ltd., 1992.

DWARF Debugging Information Format, Revision 2.0.0, Industry Review Draft, UNIX
International, Programming Languages SIG, July 27, 1993.

The M68HC05 Applications Guide, M68HC05AG/AD 3.0, Motorola

The CPU08 Reference Manual, CPU08RM/AD 2.0, Motorola

The M68HC11 Reference Manual, M68HC11RM/D 3.0, Motorola

The HC12 CPU12 Reference Manual, CPU12RM/AD 1.0, Motorola

The CPU16 Reference Manual, CPU16RM/AD 1.0, Motorola

Motorola, Inc. Transportation Systems Group, Microcontroller Division

iii M8/16EABI Version 2.0

1. INTRODUCTION ...1

THE MOTOROLA 8- AND 16-BIT PROCESSORS AND THE SYSTEM V ABI..1
HOW TO USE THE M8/16EABI ..1
EVOLUTION OF THE EABI SPECIFICATION ..1

2. SOFTWARE INSTALLATION ...2

3. LOW-LEVEL SYSTEM INFORMATION...3

SYSTEM V ABI EXECUTION SUPPORT ...3
MACHINE INTERFACE ...3

Processor Architecture ..3
Data Representation ..3

FUNCTION CALLING SEQUENCE ..5
OPERATING SYSTEM INTERFACE ..5

4. OBJECT FILES...6

INTRODUCTION..6
DATA REPRESENTATION...6
ELF HEADER ..7

Machine Information ...7
SECTIONS..8

Special Sections ...8
Relocation..9

5. PROGRAM LOADING AND DYNAMIC LINKING ...10

PROGRAM LOADING ...10
DYNAMIC LINKING ...10

6. LIBRARIES ...11

7. DWARF DEBUGGING INFORMATION FORMAT ...12

DWARF DEFINITION ..12
DWARF Register Number Mapping ..12
Target-Specific Addressing Information..13
Calling Convention Encodings..15
Target Machine Address Size ..16

8. S-RECORDS ..17

S-RECORD ADDRESS FORMAT..17

Motorola, Inc. Transportation Systems Group, Microcontroller Division

1 M8/16EABI Version 2.0

1. INTRODUCTION

The Motorola 8- and 16-Bit Processors and the System V ABI
The System V Application Binary Interface, or System V ABI, defines a system interface for
compiled application programs. Its purpose is to establish a standard binary interface for
application programs on systems that implement the operating system interfaces defined in the
System V Interface Definition, Fourth Edition.

The Motorola 8- and 16-Bit Embedded Application Binary Interface (which will be referred to as
the EABI), described in this document, supplements the generic System V ABI, and it contains
information specific to an implementation on the Motorola M68HC05, M68HC08, M68HC11,
M68HC12, M68HC16 processor architectures. Together, these two specifications, the generic
System V ABI and the EABI, constitute a complete System V Application Binary Interface for
systems that implement the architecture of these processors.

The issues addressed in the EABI are considerably narrower in scope than the generic System V
ABI. The EABI was created to meet the unique needs of M68HC05, M68HC08, M68HC11,
M68HC12, and M68HC16 embedded applications and tools, and does not discuss the many high-
level operating system interfaces addressed in the generic System V ABI. The focus is primarily
on the low-level system information and object files (ELF file format).

The EABI specifies DWARF 2.0 as the debugging information format. This format is described
in DWARF Debugging Information Format, Revision 2.0.0.

Version 2.0 of the EABI defines a set of conventions for linked executable files. The goal is to
define a standard that permits a file produced by one vendor’s linker to be consumed by another
vendor’s debugger, programmer, etc.

How to Use the M8/16EABI
While the generic System V ABI is the prime reference document, the EABI contains M68HC05,
M68HC08, M68HC11, M68HC12, and M68HC16 processor-specific implementation details,
some of which supersede information in the generic one.

As with the System V ABI, this document refers to other publicly available reference documents
(e.g. CPU12 Reference Manual, DWARF Debugging Information Format Revision 2.0.0). All
the information referenced by the EABI should be considered part of the EABI, and just as
binding as the requirements and data it explicitly includes.

Evolution of the EABI Specification
Characteristics and behaviors mandated by this version of the EABI shall continue to be
mandated indefinitely except where this document explicitly states otherwise. All mandates that
might be withdrawn or altered in the next edition of the EABI are clearly identified by the NOTE
identifier:

NOTE

Motorola, Inc. Transportation Systems Group, Microcontroller Division

2 M8/16EABI Version 2.0

2. SOFTWARE INSTALLATION

Unlike the System V ABI, the EABI shall not have required physical media for distribution of
EABI-conforming application software; a required software format (such as a continuous data
stream) on the physical media; a required layout of files on the physical media; or a required
format or interpretation of installation data files.

Motorola, Inc. Transportation Systems Group, Microcontroller Division

3 M8/16EABI Version 2.0

3. LOW-LEVEL SYSTEM INFORMATION

System V ABI Execution Support
An EABI-conforming entity, such as an application or a static linker, shall not have requirements
pertaining to:

• dynamic linking
• global offset tables
• procedure linkage tables
• shared objects

Machine Interface

Processor Architecture

The appropriate CPUxx reference manual defines the M68HC05, M68HC08, M68HC11,
M68HC12, or M68HC16 architectures. Programs intended to execute directly on the
processor use the appropriate instruction set, and the instruction encodings and semantics
of the respective architecture.

An application program may assume that all instructions defined by the architecture exist
and work as documented.

To be EABI-conforming, the processor must implement the instructions of the
architecture, perform the specified operations, and produce the expected results. The
EABI neither places performance on systems nor specifies what instructions must be
implemented in hardware. A software emulation of the architecture could conform to the
EABI.

Data Representation

Byte Ordering
Byte ordering defines how the bytes that make up 16-bit and 32-bit values are ordered in
memory. The CPU05, 08, 11, 12, 16 supports significant byte (MSB) ordering, or “Big-
Endian” as it is sometimes called, meaning that the most significant byte is located in the
lowest addressed byte position in a storage unit.

Fundamental Types
An entity conforming to Version 2.0 of the EABI shall not have requirements pertaining
to the size or alignment of fundamental types (e.g., char, short, int, long, float, double).

A 4-byte floating-point number shall conform to the single-precision format of the IEEE-
754 floating-point specification.

An 8-byte floating-point number shall conform to the double-precision format of the
IEEE-754 floating-point specification.

Motorola, Inc. Transportation Systems Group, Microcontroller Division

4 M8/16EABI Version 2.0

Aggregates and Unions
An entity conforming to Version 2.0 of the EABI shall not have requirements pertaining
to the alignment or padding of aggregates (structures and arrays) and unions.

Bit-Fields
An entity conforming to Version 2.0 of the EABI shall not have requirements pertaining
to the width and ranges of the integral objects defined by “bit-fields” in C struct and
union definitions. Version 2.0 of the EABI does not define whether a “plain” bit-field is
signed or unsigned.

NOTE

NOTE

NOTE

Future versions of the EABI may define requirements for the size and alignment of
fundamental types.

Future versions of the EABI may define requirements pertaining to the alignment or
padding of aggregates and unions.

Future versions of the EABI may define requirements for the width and range of bit-
fields.

Motorola, Inc. Transportation Systems Group, Microcontroller Division

5 M8/16EABI Version 2.0

Function Calling Sequence
An entity conforming to Version 2.0 of the EABI shall not have requirements pertaining to:

• calling conventions
• register usage during a function calling sequence
• the stack frame
• parameter passing
• variable argument lists
• return values

Operating System Interface

Unlike the System V ABI, an EABI-conforming entity shall not have operating system interface
requirements.

NOTE
Future versions of the EABI may define requirements pertaining to calling
conventions, register usage during a function calling sequence, the stack frame,
parameter passing, variable argument lists, and return values.

Motorola, Inc. Transportation Systems Group, Microcontroller Division

6 M8/16EABI Version 2.0

4. OBJECT FILES

Introduction
This section describes the object file format, called ELF (Executable and Linking Format).

Data Representation
Certain members of the M68HC11, M68HC12, and M68HC16 families incorporate support for
addressing a larger memory space than the standard 64-Kb through a paged memory or bank-
switching scheme.

The EABI defines the System V ABI Elf32_Addr data type as having the following format in
order to support banking:

31 24 23 16 15 0 bit

0x0 bank logical_address

bank For logical addresses falling within a bank window, this is the value of
the page register. For addresses that do not fall in a bank window, this
value is 0x0. For devices that do not support banked addressing, this
value is 0x0.

logical_address This is the address within the 64-Kb address space of the M68HC11,
M68HC12, or M68HC16. For banked addresses, the value of
logical_address determines which page register (PPAGE, DPAGE,
or EPAGE) the bank value belongs in. For memory expansion
information for a particular divice in the family above, please refer to the
technical specification for that device.

Figure 4-1, Example of Elf32_Addr format

The CPU12 Reference Manual documents that the program window (controlled by the PPAGE
register) always occupies the 16-Kb space from 0x8000 to 0xBFFF. Suppose an Elf32_Addr
address had the value 0x00129000. Its meaning is as follows:

The value of logical_address is 0x9000. This specifies the address within the 64-Kb
address space of the M68HC12. Since 0x9000 falls within the program window this
identifies that the value of bank belongs in the PPAGE register.

The value of bank is 0x12. This value belongs in the PPAGE register.

NOTE
The System V ABI describes three main types of object files—relocatable,
executable, and shared object. Version 2.0 of the EABI requires that conforming
entities support executable files. The other types of object files may be addressed
in a future version of the EABI.

Motorola, Inc. Transportation Systems Group, Microcontroller Division

7 M8/16EABI Version 2.0

ELF Header

Machine Information

For file identification in e_ident, the EABI requires the values shown in Figure 4-2.

Figure 4-2, M68HC05, M68HC08, M68HC11, M68HC12, and M68HC16 Identification,
e_ident

Position Value Comments
e_ident[EI_CLASS] 1 (ELFCLASS32) Address space < 4 Gbytes
e_ident[EI_DATA] 2 (ELFDATA2MSB) M8/16 Processors are Big-Endian
e_ident[EI_VERSION] 1 Original ELF file format

Please note that the ELFDATA2MSB value specifies that data objects in a file are encoded as 2’s
complement values, with the most significant byte occupying the lowest address (Big-Endian).

For the object type member e_type, an entity conforming to Version 2.0 of the EABI must
support the type ET_EXEC, which specifies an executable file.

Processor identification resides in the ELF header’s e_machine member and must have the
following values:

Decimal 72 - defined as the name EM_68HC05,

Decimal 71 - defined as the name EM_68HC08,

Decimal 70 - defined as the name EM_68HC11,

Decimal 53 - defined as the name EM_68HC12,

Decimal 69 - defined as the name EM_68HC16.

NOTE

A draft of an ELF specification has been circulated among some tools developers
with an unofficial value specified for e_machine. The value specified for the
M68HC12 processor was 0x4D12. While an object file with this value would not
conform to the EABI, a consuming tool developer may wish to recognize it.

Motorola, Inc. Transportation Systems Group, Microcontroller Division

8 M8/16EABI Version 2.0

Sections

Special Sections

In addition to the special sections defined in the generic System V ABI, the EABI defines the
sections in the list below.

Figure 4-3, Special Sections

Name Type Attributes
.debug_abbrev SHT_PROGBITS none
.debug_aranges SHT_PROGBITS none
.debug_frame SHT_PROGBITS none
.debug_info SHT_PROGBITS none
.debug_line SHT_PROGBITS none
.debug_loc SHT_PROGBITS none
.debug_macinfo SHT_PROGBITS none
.debug_pubnames SHT_PROGBITS none
.debug_str SHT_PROGBITS none

.debug_abbrev This section holds DWARF 2.0 abbreviation tables.

.debug_aranges This section holds the DWARF 2.0 lookup table to find the debugging
information for an object by address.

.debug_frame This section holds DWARF 2.0 virtual unwind information.

.debug_info This section holds DWARF 2.0 debugging information entries.

.debug_line This section holds DWARF 2.0 line number information.

.debug_loc This section holds DWARF 2.0 location lists.

.debug_macinfo This section holds DWARF 2.0 macro information.

.debug_pubnames This section holds the DWARF 2.0 lookup table to find the debugging
information for an object by name.

.debug_str This section holds string values for DWARF 2.0 attributes.

NOTE

While a section header table is not required in a linked executable file, the table and
the accompanying section name string table (.shstrtab section) are necessary for
a debugger to locate the sections specifying debugging information.

Motorola, Inc. Transportation Systems Group, Microcontroller Division

9 M8/16EABI Version 2.0

Relocation

An entity conforming to Version 2.0 of the EABI shall not have requirements pertaining to
relocation.

NOTE
Future versions of the EABI may define requirements pertaining to relocation.

Motorola, Inc. Transportation Systems Group, Microcontroller Division

10 M8/16EABI Version 2.0

5. PROGRAM LOADING AND DYNAMIC LINKING

Program Loading
An EABI-conforming entity shall not have program loading requirements.

Dynamic Linking
An EABI-conforming entity shall not have dynamic linking requirements.

Motorola, Inc. Transportation Systems Group, Microcontroller Division

11 M8/16EABI Version 2.0

6. LIBRARIES

An entity conforming to Version 2.0 of the EABI shall not have requirements pertaining to
library interfaces.

NOTE
Future versions of the EABI may define requirements pertaining to library interfaces.

Motorola, Inc. Transportation Systems Group, Microcontroller Division

12 M8/16EABI Version 2.0

7. DWARF Debugging Information Format

DWARF Definition
The EABI adopts DWARF Version 2.0 as the debugging format for EABI-conforming
applications. This format is described in DWARF Debugging Information Format, Revision
2.0.0.

DWARF is a specification developed for symbolic, source-level debugging. The debugging
information format does not favor the design of any compiler or debugger.

DWARF Register Number Mapping

Figure 7-1 outlines the register number mapping for the M68HC05, M68HC08, M68HC11,
M68HC12, and M68HC16 processor families. See Section 2.4.2 of DWARF Debugging
Information Format, Revision 2.0.0 for additional information regarding register-naming
operations.

Figure 7-1, Motorola 8/16-Bit Processor Register Number Mapping

Register Name Number
HC
05

HC
08

HC
11

HC
12

HC
16

Accumulator A 0 X X X X X
Accumulator B 1 X X X
Accumulator D 3 X X X
Accumulator E 4 X
Index Register H 6 X
Index Register X 7 X X X X X
Index Register Y 8 X X X
Index Register Z 9 X
Stack Pointer 15 X X X X X
Program Counter 16 X X X X X
Condition Code Register 17 X X X X X
Address Extension Register (K) 20 X
Stack Extension Register (SK) 21 X
MAC Multiplier Register (HR) 27 X
MAC Multiplicand Register (IR) 28 X
MAC Accumulator (AM) 29 X
MAC XY Mask Register 30 X

Motorola, Inc. Transportation Systems Group, Microcontroller Division

13 M8/16EABI Version 2.0

Target-Specific Addressing Information

Any debugging information entry representing a pointer or reference type or a subroutine or
subroutine type may have a DW_AT_address_class attribute, whose value is a constant.
The set of permissible values for the M68HC12 processor family is described in Figure 7-2.

Figure 7-2, Address Class Codes

Code Value Meaning
DW_ADDR_none 0 No class specified
DW_ADDR_page_2 1 Page value is in byte 2

If the DW_AT_address_class attribute is not present or has a value of DW_ADDR_none,
the address has the format described below in Figure 7-3.

Figure 7-3, Address Layout for DW_ADDR_none

If the pointer is 2 bytes the address layout is:
15 0 bit

logical_address

If the pointer is 3 bytes the address layout is:
23 16 15 0 bit

bank logical_address

If the pointer is 4 bytes the address layout is:
31 24 23 16 15 0 bit

0x0 bank logical_address

bank For logical addresses falling within a bank window, this is the value of
the page register. For addresses that do not fall in a bank window, this
value is 0x0. For devices in the Motorola 8- and 16-bit families that do
not support banked addressing, this value is 0x0.

logical_address This is the address within the 64-Kb address space of the M68HC11,
M68HC12, and M68HC16. For banked addresses, the value of
logical_address determines which page register (PPAGE,
DPAGE, or EPAGE) the bank value belongs in. For memory
expansion information for a particular device in the these families,
please refer to the technical specification for that device.

Motorola, Inc. Transportation Systems Group, Microcontroller Division

14 M8/16EABI Version 2.0

If the DW_AT_address_class attribute is present and has a value of DW_ADDR_page_2,
the address has the format described below in Figure 7-4.

Figure 7-4, Address Layout for DW_ADDR_page_2

If the pointer is 3 bytes the address layout is:
23 8 7 0 bit

logical_address bank

If the pointer is 4 bytes the address layout is:
31 24 23 8 7 0 bit

0x0 logical_address bank

bank For logical addresses falling within a bank window, this is the value of
the page register. For addresses that do not fall in a bank window, this
value is 0x0. For devices in the Motorola 8- and 16-bit families that do
not support banked addressing, this value is 0x0.

logical_address This is the address within the 64-Kb address space of the M68HC11,
M68HC12, and M68HC16. For banked addresses, the value of
logical_address determines which page register (PPAGE,
DPAGE, or EPAGE) the bank value belongs in. For memory
expansion information for a particular device in these families, please
refer to the technical specification for that device.

Motorola, Inc. Transportation Systems Group, Microcontroller Division

15 M8/16EABI Version 2.0

Calling Convention Encodings

Certain members of the M68HC11, M68HC12, and M68HC16 families incorporate support for
addressing a larger memory space than the standard 64-Kb through a paged memory or bank-
switching scheme. Functions can reside in this expanded memory. The EABI specifies that the
DWARF DW_AT_calling_convention attribute should be used to distinguish the
different ways in which a function may be called. This attribute provides the debugger the
necessary information to perform a back trace using the stack.

The encodings for values of the DW_AT_calling_convention attribute are given in figure
7-5.

Figure 7-5, Calling Convention Encodings

Code Value
DW_CC_normal 0x1
DW_CC_nocall 0x3
DW_CC_far 0x40

The DW_CC_far value shall be used to identify a banked function (called with the CALL
instruction).

The DW_CC_nocall value shall be used to identify an interrupt handler function (terminated by
RTI instruction).

If the DW_AT_calling_convention attribute is not present or has a value of
DW_CC_normal, the function shall be assumed to be non-banked (called with the JSR or BSR
instructions).

Motorola, Inc. Transportation Systems Group, Microcontroller Division

16 M8/16EABI Version 2.0

Target Machine Address Size

The DWARF Debugging Information Format, Revision 2.0.0 specification makes numerous
references to “the size of an address on the target machine.” While the M68HC11, M68HC12,
and M68HC16 architectures define a 16-bit logical address space, in order to support banked
addressing, the EABI defines DWARF “target machine addresses” to be 4 bytes (32 bits) with the
following format:

31 24 23 16 15 0 bit

0x0 bank logical_address

bank For logical addresses falling within a bank window, this is the value of
the page register. For addresses that do not fall in a bank window, this
value is 0x0. For devices in the Motorola 8- and 16-bit families that do
not support banked addressing, this value is 0x0.

logical_address This is the address within the 64-Kb address space of the M68HC11,
M68HC12, and M68HC16. For banked addresses, the value of
logical_address determines which page register (PPAGE,
DPAGE, or EPAGE) the bank value belongs in. For memory
expansion information for a particular device in these families, please
refer to the technical specification for that chip.

Thus, the value of a DWARF attribute with the form class “address” (DW_FORM_addr) is 32
bits in size and has the format described above. This also means that a DWARF 2.0 location
expression resolves into a 32-bit address in the above format and the size of the location
expression stack is 32 bits.

Motorola, Inc. Transportation Systems Group, Microcontroller Division

17 M8/16EABI Version 2.0

8. S-Records

S-Record Address Format
The Motorola S-Record format encodes programs or data files in a printable format for
transportation between computer systems.

For code/ data in banked memory areas (addresses > 2 bytes), the address field of an S-Record
for that code/ data shall be encoded with the physical address. The physical address is the value
resulting from the expansion by the M68HC11, M68HC12, or M68HC16 of the logical address
and the page register value. Memory expansion for a particular device in these families is
described in the technical reference for that respective device.

